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Models in Robotics  – Outline

Kinematic Models
Kinematics studies of motion of bodies and systems based only on geometry, i.e. 
without considering the physical properties and the forces acting on them.  The 
essential concept is a pose (position and orientation).

Dynamic Models
Dynamics studies the relationship between the forces and moments acting on a robot 
and accelerations they produce

Geometric Models
Geometry: Mathematical description of the shape of bodies
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Dynamic Model: Definition & Goal

Definition:

Goal:
Analysis of the dynamics

Design und synthesis of mechanical structures

Controller design and control (→ Inverse Dynamics)

Modeling and simulation (→ Forward Dynamics)

The dynamic model describes  the relationship between the actuator and 

contact forces and moments acting on a robot and accelerations and 

motions they produce
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Motivation

Boston Dynamics: https://www.youtube.com/watch?v=_sBBaNYex3E
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Dynamic Model: Equation of Motion

General equation of motion

𝒒, ሶ𝒒, ሷ𝒒: 𝑛 × 1 vector of generalized coordinates
(position, velocity and acceleration)

𝝉: 𝑛 × 1 vector of generalized forces
𝑀(𝒒): 𝑛 × 𝑛 matrix of mass inertia (symmetric, positive-definite)
𝐶 ሶ𝒒, 𝒒 ሶ𝒒: 𝑛 × 1 vector with centripetal and Coriolis components
𝑔 𝒒 : 𝑛 × 1 vector of gravitational components
𝜖(𝒒, ሶ𝒒, ሷ𝒒): 𝑛 × 1 non-linear effects, e.g. friction (often neglected)

𝑛: degrees of freedom of the robot

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒 + 𝜖(𝒒, ሶ𝒒, ሷ𝒒)
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Dynamic Model: Equation of Motion

General equation of motion

𝒒, ሶ𝒒, ሷ𝒒: 𝑛 × 1 vector of generalized coordinates
(position, velocity and acceleration)

𝝉: 𝑛 × 1 vector of generalized forces
𝑀(𝒒): 𝑛 × 𝑛 matrix of mass inertia (symmetric, positive-definite)
𝐶 ሶ𝒒, 𝒒 ሶ𝒒: 𝑛 × 1 vector with centripetal and Coriolis components
𝑔 𝒒 : 𝑛 × 1 vector of gravitational components
𝜖(𝒒, ሶ𝒒, ሷ𝒒): 𝑛 × 1 non-linear effects, e.g. friction (often neglected)

𝑛: degrees of freedom of the robot

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒 + 𝜖(𝒒, ሶ𝒒, ሷ𝒒)

What are generalized coordinates?
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Generalized Coordinates (1)

Definition

General Model
A robot consists of 𝑁 particles with mass 𝑚𝑖 and coordinate 𝒙𝒊
For each position vector of a particle 3 spatial coordinates are needed, in total 
𝟑𝑵 coordinates, to describe the system

Newton’s second law: 𝑭𝑖 = 𝑚𝑖 ⋅ ሷ𝒙𝑖 with   𝑖 = 1,… ,𝑁

Particles cannot move independently of each other due to connections and joints

→ Introduction of constraints

Minimum set of independent coordinates that completely describe
the system state.
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Generalized Coordinates (2)

Holonomic constraints can be formulated as equations of the coordinates 𝒙𝒊
(𝑘: number of constraints):

𝑓𝑗 𝑥1, … , 𝑥3𝑁 = 0 𝑗 = 1, … , 𝑘

The 3𝑁 coordinates can be reduced to 𝒏 = 𝟑𝑵− 𝒌 independent generalized
coordinates 𝒒𝑖 using 𝑘 independent constraints which must automatically satisfy the
constraints:

𝑥𝑖 = 𝑥𝑖(𝑞1, … , 𝑞𝑛) 𝑖 = 1,… , 3𝑁 and 𝑛 = 3𝑁 − 𝑘

𝑓𝑗 𝑞1, … , 𝑞𝑛 = 0 𝑗 = 1,… , 𝑘 and 𝑛 = 3𝑁 − 𝑘
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Generalized Coordinates : 2D pendulum

The rod of a plane pendulum (2D) should always have
the length 𝒍 and must therefore fulfill the following
constraint (𝑘 = 1) according to Pythagoras:

There is only one generalized coordinate 𝒒, since
𝑛 = 2𝑁 − 𝑘 = 1. The coordinates 𝑥, 𝑦 of the center of
mass 𝒓 depend on 𝜃:

𝑓1 𝑥1, 𝑥2 = 0 𝑥1 = 𝑥, 𝑥2 = 𝑦

⟺ 𝑥2 + 𝑦2 − 𝑙2 = 0

𝑥 = 𝑙 ∙ sin 𝜃

𝑦 = 𝑙 ∙ c𝑜𝑠 𝜃
𝒓 = 𝑓 𝑞 = 𝑙 ⋅

sin 𝜃

c𝑜𝑠 𝜃
→

𝑙

𝜃

𝒓

𝑥

𝑦
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Generalized Coordinates : 2D pendulum

The generalized coordinate automatically satisfies the
constraint:

As the following generally applies:

(𝑙 ∙ sin 𝜃)2 + 𝑙 ∙ cos 𝜃 2 − 𝑙2 = 0

⟺ 𝑙2 ∙ (sin2 𝜃 + cos2 𝜃 − 1) = 0

sin2 𝜃 + cos2 𝜃 = 1

𝑙

𝜃

𝒓

𝑥

𝑦
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Generalized Coordinates: 3D pendulum

Position of the mass: 𝒓 =
𝑥
𝑦
𝑧

Constraint (𝑘 = 1) on a sphere surface

𝒓 = 𝑙 ⇔ 𝒓 − 𝑙 = 0

𝑓1 𝒓 = 𝒓 − 𝑙 = 0

Generalisierte Koordinaten (𝑛 = 3𝑁 − 𝑘 = 2):   𝒒 =
𝜃
𝜙

𝒓 = 𝑓 𝒒 = 𝑙 ⋅
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
− cos 𝜃

𝑙

𝜃

𝒓

𝑥

𝑦
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Generalized Coordinates: Example

𝒓 − 𝑙 = 0 ⇒ 𝒓 𝟐 − 𝑙2 = 0

𝒓 = 𝑓 𝒒 = 𝑙 ⋅
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
− cos 𝜃

𝒓 𝟐 =
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Generalized Coordinates: Example

𝒓 − 𝑙 = 0 ⇒ 𝒓 𝟐 − 𝑙2 = 0

𝒓 = 𝑓 𝒒 = 𝑙 ⋅
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
− cos 𝜃

𝒓 𝟐 = 𝑙2 ⋅
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
−cos𝜃

2

= 𝑙2 ⋅ (sin2 𝜃 cos2 𝜙 + sin2 𝜃 sin2 𝜙 + cos2 𝜃)

= 𝑙2 ⋅ (sin2 𝜃 ⋅ (cos2 𝜙 + sin2 𝜙) + cos2 𝜃)

= 𝑙2 ⋅ (sin2 𝜃 + cos2 𝜃)

= 𝑙2
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Dynamic Model: Equation of Motion

General equation of motion

𝒒, ሶ𝒒, ሷ𝒒: 𝑛 × 1 vector of generalized coordinates
(position, velocity and acceleration)

𝝉: 𝑛 × 1 vector of generalized forces
𝑀(𝒒): 𝑛 × 𝑛 matrix of mass inertia (symmetric, positive-definite)
𝐶 ሶ𝒒, 𝒒 ሶ𝒒: 𝑛 × 1 vector with centripetal and Coriolis components
𝑔 𝒒 : 𝑛 × 1 vector of gravitational components
𝜖(𝒒, ሶ𝒒, ሷ𝒒): 𝑛 × 1 non-linear effects, e.g. friction (often neglected)

𝑛: degrees of freedom of the robot

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒 + 𝜖(𝒒, ሶ𝒒, ሷ𝒒)
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Direct Dynamic Problem

Calculate the resulting changes in movement based on external forces and moments 
as well as the initial state and the dynamic properties of the robot 

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒 (non-linear effects neglected)

→ solve differential equation for 𝒒 𝒕 , ሶ𝒒 𝒕 , ሷ𝒒(𝒕)

given: 𝝉(𝑡) desired: 𝒒 𝑡 , ሶ𝒒 𝑡 , ሷ𝒒(𝑡)

given: 𝒒 𝑡0 , ሶ𝒒 𝑡0 , ሷ𝒒(𝑡0)

Initial value problem of 
mechanics

Direct
Dynamic
Problem
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Inverse Dynamic Problem

Calculate required driving forces and torques based on the desired motion 
parameters and the dynamic properties of the robot 

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒 (non-linear effects neglected)

Calculate the right part of the equation by inserting 𝒒(𝑡), 𝒒 ̇(𝑡), 𝒒 ̈(𝑡)

given: 𝒒 𝑡 , ሶ𝒒 𝑡 , ሷ𝒒(𝑡) desired: 𝝉(𝑡)Inverse
Dynamic
Problem
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Dynamic Model: Example

Balance of forces: 𝜏 = − 𝐹𝑖 + 𝐹𝑓

Equation of motion: 𝜏 = 𝑚 ሷ𝑥 + 𝐾𝑠𝑓 ሶ𝑥

Inverse problem: Given the state of motion, what external force 𝜏 acts on the system or is 
required to maintain the state of motion?

Direct problem: Given the external force and current state of motion, what is the new motion 
(or acceleration) state of the system?

𝐹𝑖 = −𝑚 ሷ𝑥 inertia

𝐹𝑓 = −𝐾𝑠𝑓 ሶ𝑥 sliding friction

𝜏 external force

𝑚

𝐹𝑖 𝐹𝑓 𝜏



Robotik I: Introduction to Robotics | Chapter 0420

Contents

Dynamic Model

Generalized Coordinates

Modeling of Dynamics

Method of Lagrange

Method of Newton-Euler

Challenges of Dynamics



Robotik I: Introduction to Robotics | Chapter 0421

Modeling of Dynamics

There are various methods for deriving the terms of the general equation of motion:

Lagrange

Work or energy considerations of the overall system

Equations of motion by formal derivation

Newton-Euler

Based on the Newton and Euler equations for rigid bodies

Isolated consideration of the arm elements

Efficient method due to recursive algorithm

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒
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Method of Lagrange

Lagrange function:

The equation of motion can be derived using the Lagrange function for each 
generalized coordinate:

𝑞𝑖: 𝑖-th component of the generalized coordinates

𝜏𝑖: 𝑖-th component of the generalized forces

𝐿(𝒒, ሶ𝒒) = 𝐸𝑘𝑖𝑛(𝒒, ሶ𝒒) − 𝐸𝑝𝑜𝑡(𝒒)

𝜏𝑖 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
−
𝜕𝐿

𝜕𝑞𝑖
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Method of Lagrange

The resulting equation can be written in scalar form:

𝜏𝑖 =෍

𝑗=1

𝑛

𝑀𝑖𝑗 ሷ𝑞𝑗 +෍

𝑗=1

𝑛

෍

𝑘=1

𝑛

𝐶𝑖𝑗𝑘 ሶ𝑞𝑗 ሶ𝑞𝑘 + 𝑔(𝑞)

𝐶𝑖𝑗𝑘: first order Christoffel symbols

𝐶𝑖𝑗𝑘 =
1

2

𝜕𝑀𝑖𝑗

𝜕𝑞𝑘
+
𝜕𝑀𝑖𝑘

𝜕𝑞𝑗
−
𝜕𝑀𝑗𝑘

𝜕𝑞𝑖
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Method of Lagrange: Procedure

Goal: Determine the equation of motion for each joint 𝑖 of a robot

Procedure:
1. Calculate 𝐸𝑘𝑖𝑛 and 𝐸𝑝𝑜𝑡

2. Express 𝐸𝑘𝑖𝑛 and 𝐸𝑝𝑜𝑡 in generalized coordinates

3. Calculate the derivations

𝜏𝑖 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
−
𝜕𝐿

𝜕𝑞𝑖

𝐿(𝒒, ሶ𝒒) = 𝐸𝑘𝑖𝑛(𝒒, ሶ𝒒) − 𝐸𝑝𝑜𝑡(𝒒)
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Method of Lagrange: 3D-Pendulum (1)

3D-pendulum with gravity
(see example of generalized coordinates)

𝒓 = 𝑓 𝒒 = 𝑙 ⋅
sin 𝜃 cos𝜙
sin 𝜃 sin𝜙
− cos 𝜃

𝐸𝑘𝑖𝑛 =
1

2
𝑚 ሶ𝒓 2 =

1

2
𝑚𝑙2 ሶ𝜃2 + ሶ𝜙2 ⋅ sin2 𝜃

𝐸𝑝𝑜𝑡 = 𝑚 ⋅ 𝑔 ⋅ ℎ = 𝑚𝑔 ⋅ (− 𝑙 ⋅ cos 𝜃)

𝑙

𝜃

𝜙 𝑚𝑔

𝑓 𝑥 = 𝑢 𝑥 ⋅ 𝑣 𝑥 ⇒ ሶ𝑓 𝑥 = 𝑢 𝑥 ⋅ ሶ𝑣 𝑥 + ሶ𝑢 𝑥 ⋅ 𝑣 𝑥
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Method of Lagrange: 3D-Pendulum (2)

Lagrange function with 𝒒 = (𝜃, 𝜙)

𝐿 𝒒, ሶ𝒒 = 𝐸𝑘𝑖𝑛 𝒒, ሶ𝒒 − 𝐸𝑝𝑜𝑡 𝒒

=
1

2
𝑚𝑙2 ሶ𝜃2 + ሶ𝜙2 ⋅ sin2 𝜃 +𝑚𝑔𝑙 ⋅ cos𝜃

Derive:

𝜕𝐿

𝜕𝜃
=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
=

𝜕𝐿

𝜕𝜙
=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜙
=

𝑙

𝜃

𝜙 𝑚𝑔

𝝉𝒊 =
𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝒒𝒊
−
𝝏𝑳

𝝏𝒒𝒊
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Method of Lagrange: 3D-Pendulum (2)

Lagrange function with 𝒒 = (𝜃, 𝜙)

𝐿 𝒒, ሶ𝒒 = 𝐸𝑘𝑖𝑛 𝒒, ሶ𝒒 − 𝐸𝑝𝑜𝑡 𝒒

=
1

2
𝑚𝑙2 ሶ𝜃2 + ሶ𝜙2 ⋅ sin2 𝜃 +𝑚𝑔𝑙 ⋅ cos𝜃

Derive:

𝜕𝐿

𝜕𝜃
= 𝑚𝑙2 sin 𝜃 cos𝜃 ⋅ ሶ𝜙2 −𝑚𝑔𝑙 ⋅ sin 𝜃

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
=

𝑑

𝑑𝑡
𝑚𝑙2 ሶ𝜃 = 𝑚𝑙2 ሷ𝜃

𝜕𝐿

𝜕𝜙
= 0

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜙
=

𝑑

𝑑𝑡
𝑚𝑙2 ሶ𝜙 ⋅ sin2 𝜃 = 𝑚𝑙2 sin2 𝜃 ⋅ ሷ𝜙 + 2𝑚𝑙2 sin 𝜃 cos𝜃 ⋅ ሶ𝜃 ሶ⋅ 𝜙

𝑙

𝜃

𝜙 𝑚𝑔

𝝉𝒊 =
𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝒒𝒊
−
𝝏𝑳

𝝏𝒒𝒊
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Structure of general equations of motion

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒

Equation of motion of the 3D-pendulum (no external forces -> 𝝉 = 𝟎)

𝟎 = 𝑚𝑙2 0
0 𝑚𝑙2 sin2 𝜃

ሷ𝜃
ሷ𝜙
+

−𝑚𝑙2 sin 𝜃 cos 𝜃 ⋅ ሶ𝜙2

2𝑚𝑙2 sin 𝜃 cos 𝜃 ⋅ ሶ𝜃 ሶ𝜙
+

𝑚𝑔𝑙 sin 𝜃
0

Method of Lagrange: 3D-Pendulum (3)

𝝉𝒊 =
𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝒒𝒊
−
𝝏𝑳

𝝏𝒒𝒊

𝜕𝐿

𝜕𝜃
= 𝑚𝑙2 sin 𝜃 cos 𝜃 ⋅ ሶ𝜙2 −𝑚𝑔𝑙 ⋅ sin 𝜃

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
=

𝑑

𝑑𝑡
𝑚𝑙2 ሶ𝜃 = 𝑚𝑙2 ሷ𝜃

𝜕𝐿

𝜕𝜙
= 0

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜙
=

𝑑

𝑑𝑡
𝑚𝑙2 ሶ𝜙 ⋅ sin2 𝜃 = 𝑚𝑙2 sin2 𝜃 ⋅ ሷ𝜙 + 2𝑚𝑙2 sin 𝜃 cos 𝜃 ⋅ ሶ𝜃 ሶ𝜙
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Lagrange: Example – Two pivot joints (1)

𝑎1

𝑎2

𝑞1

𝑞2
𝑔

𝑥

𝑦
𝑚2

𝑚1

𝒓𝟏

𝒓𝟐

Idealization:

masses of arm elements as
point masses in 𝑚1 and 𝑚2

no friction

Constraints of the system (𝑘 = 2):

𝑓1 𝒓1, 𝒓2 = 𝒓1
2 − 𝑎1

2 = 0

𝑓2 𝒓1, 𝒓2 = 𝒓2 − 𝒓1
2 − 𝑎2

2 = 0

→𝑛 = 2𝑁 − 𝑘 = 2

→generalized coordinates 𝑞1, 𝑞2
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Lagrange: Example – Two pivot joints (2)

𝑎1

𝑚1

𝑞1

𝑔

𝑥

𝑦

ℎ

Joint 1:

𝐸𝑘𝑖𝑛,1 =
1

2
𝑚1𝑣

2 =
1

2
𝑚1𝑎1

2 ሶ𝑞1
2

𝐸𝑝𝑜𝑡,1 = 𝑚1𝑔ℎ = 𝑚1𝑔𝑎1 sin(𝑞1)
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Lagrange: Example – Two pivot joints (3)

𝑎1

𝑎2

𝑚2

𝑞1

𝑞2 𝑔

𝑥

𝑦 (𝑥2, 𝑦2)

Joint 2:

Position:

𝑥2
𝑦2

=
𝑎1 cos(𝑞1) + 𝑎2cos(𝑞1 + 𝑞2)
𝑎1 sin(𝑞1) + 𝑎2sin(𝑞1 + 𝑞2)

Velocity:

ሶ𝑥2
ሶ𝑦2
=

−𝑎1 ሶ𝑞1 sin 𝑞1 − 𝑎2 ሶ𝑞1 + ሶ𝑞2 sin(𝑞1 + 𝑞2)

𝑎1 ሶ𝑞1 cos 𝑞1 + 𝑎2 ሶ𝑞1 + ሶ𝑞2 cos(𝑞1 + 𝑞2)
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Lagrange: Example – Two pivot joints (4)

Joint 2:

Kinetic energy:
𝑣2

2 = ሶ𝑥2
2 + ሶ𝑦2

2 = 𝑎1
2 ሶ𝑞1

2 + 𝑎2
2 ሶ𝑞1 + ሶ𝑞2

2 + 2𝑎1𝑎2 ሶ𝑞1
2 + ሶ𝑞1 ሶ𝑞2 cos 𝑞2

𝐸𝑘𝑖𝑛,2 =
1

2
𝑚2𝑣2

2 =
1

2
𝑚2𝑎1

2 ሶ𝑞1
2 +

1

2
𝑚2𝑎2

2 ሶ𝑞1 + ሶ𝑞2
2 +𝑚2𝑎1𝑎2 ሶ𝑞1

2 + ሶ𝑞1 ሶ𝑞2 cos(𝑞2)

Potential energy:
𝐸𝑝𝑜𝑡,2 = 𝑚2𝑔𝑦2 = 𝑚2𝑔 𝑎1 sin 𝑞1 + 𝑎2sin(𝑞1 + 𝑞2)

Lagrange function:
𝐿 = 𝐸𝑘𝑖𝑛 − 𝐸𝑝𝑜𝑡 = 𝐸𝑘𝑖𝑛,1 + 𝐸𝑘𝑖𝑛,2 − 𝐸𝑝𝑜𝑡,1 − 𝐸𝑝𝑜𝑡,2

=
1

2
𝑚1 +𝑚2 𝑎1

2 ሶ𝑞1
2 +

1

2
𝑚2𝑎2

2 ሶ𝑞1 + ሶ𝑞2
2 +𝑚2𝑎1𝑎2 ሶ𝑞1

2 + ሶ𝑞1 ሶ𝑞2 cos 𝑞2
− 𝑚1 +𝑚2 𝑔𝑎1 sin 𝑞1 −𝑚2𝑔𝑎2sin(𝑞1 + 𝑞2)

ሶ𝑥2
ሶ𝑦2
=

−𝑎1 ሶ𝑞1 sin 𝑞1 − 𝑎2 ሶ𝑞1 + ሶ𝑞2 sin(𝑞1 + 𝑞2)

𝑎1 ሶ𝑞1 cos 𝑞1 + 𝑎2 ሶ𝑞1 + ሶ𝑞2 cos(𝑞1 + 𝑞2)
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Lagrange: Example – Two pivot joints (5)

Equation of motion

Joint 1:

𝜕𝐿

𝜕 ሶ𝑞1
= 𝑚1 +𝑚2 𝑎1

2 ሶ𝑞1 +𝑚2𝑎2
2 ሶ𝑞1 + ሶ𝑞2 +𝑚2𝑎1𝑎2 2 ሶ𝑞1 + ሶ𝑞2 cos 𝑞2

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞1
= 𝑚1 +𝑚2 𝑎1

2 ሷ𝑞1 +𝑚2𝑎2
2 ሷ𝑞1 + ሷ𝑞2 +𝑚2𝑎1𝑎2 2 ሷ𝑞1 + ሷ𝑞2 cos 𝑞2

−𝑚2𝑎1𝑎2 2 ሶ𝑞1 ሶ𝑞2 + ሶ𝑞2
2 sin 𝑞2

𝜕𝐿

𝜕𝑞1
= − 𝑚1 +m2 𝑔𝑎1cos 𝑞1 −𝑚2𝑔𝑎2cos(𝑞1 + 𝑞2)
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Lagrange: Example – Two pivot joints (5)

Equation of motion

Joint 2:

𝜕𝐿

𝜕 ሶ𝑞2
= 𝑚2𝑎2

2 ሶ𝑞1 + ሶ𝑞2 +𝑚2𝑎1𝑎2 ሶ𝑞1 cos 𝑞2

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞2
= 𝑚2𝑎2

2 ሷ𝑞1 + ሷ𝑞2 +𝑚2𝑎1𝑎2 ሷ𝑞1 cos 𝑞2 −𝑚2𝑎1𝑎2 ሶ𝑞1 ሶ𝑞2 sin 𝑞2

𝜕𝐿

𝜕𝑞2
= −𝑚2𝑎1𝑎2 ሶ𝑞1

2 + ሶ𝑞1 ሶ𝑞2 sin 𝑞2 −𝑚2𝑔𝑎2cos(𝑞1 + 𝑞2)
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Lagrange: Example – Two pivot joints (6)

Equation of motion:

𝜏1
𝜏2

=
𝑚1 +𝑚2 𝑎1

2 +𝑚2𝑎2
2 + 2𝑚2𝑎1𝑎2 cos 𝑞2 𝑚2𝑎2

2 +𝑚2𝑎1𝑎2cos(𝑞2)

𝑚2𝑎2
2 +𝑚2𝑎1𝑎2 cos 𝑞2 𝑚2𝑎2

2

ሷ𝑞1
ሷ𝑞2

+
−𝑚2𝑎1𝑎2 2 ሶ𝑞1 ሶ𝑞2 + ሶ𝑞2

2 sin(𝑞2)

𝑚2𝑎1𝑎2 ሶ𝑞1
2sin(𝑞2)

+
𝑚1 +𝑚2 𝑔𝑎1 cos 𝑞1 +𝑚2𝑔𝑎2cos(𝑞1 + 𝑞2)

𝑚2𝑔𝑎2cos(𝑞1 + 𝑞2)

Summarized:
𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒
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Method of Lagrange: Summary

To determine the equations of motion, the kinetic and potential energy must be 
determined. From this, the Lagrange function can be calculated. 

The equations of motion then follow formally by differentiation:

𝝉𝒊 =
𝒅

𝒅𝒕

𝝏𝑳

𝝏 ሶ𝒒𝒊
−
𝝏𝑳

𝝏𝒒𝒊

𝐿(𝒒, ሶ𝒒) = 𝐸𝑘𝑖𝑛(𝒒, ሶ𝒒) − 𝐸𝑝𝑜𝑡(𝒒)
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Method of Lagrange: Properties

Properties

Simple formulation of the equations

Closed model, analytically evaluable

Very extensive calculations 𝑂 𝑛3

(𝑛 : number of joints)

Only driving torques are calculated
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Method of Newton-Euler

Idea: Forces and moments acting on an arm element can be calculated from the joint 
angle positions, velocities and accelerations using the recursive Newton-Euler 
algorithm (RNEA)

Properties

Isolated considertaion of each arm element

Efficient calculation in real-time with complexity 𝑶 𝒏 possible through recursive 
algorithm

Input: 𝒒 𝑡 , ሶ𝒒 𝑡 , ሷ𝒒(𝑡) Output: 𝝉(𝑡)Recursive
Newton-Euler 

Algorithm
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Newton-Euler: Mathematical Basics

The moment of inertia of a rigid body in a rotation motion is comparable to the mass
in a linear motion:

linear motion: force = mass ∙ acceleration
(Newton‘s second law)

rotation motion: torque = moment of inertia ∙ angular acceleration 
(Angular momentum theorem)

𝒇 = 𝑚 ∙ 𝒂 = 𝑚 ∙ ሶ𝒗𝑐 = 𝑚 ∙ ሷ𝒄

𝑴 = ത𝑰𝐶𝑜𝑀𝜶 = ത𝑰𝐶𝑜𝑀 ሶ𝝎

CoM: Center of Mass
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Newton-Euler: Euler‘s Equation of Motion

If a body is subjected to a torque, gyroscopic effects develop
(Euler forces and centrifugal forces at all mass points) 

The torques can be added up and described by Euler's equation of motion for rigid 
bodies: 

𝒏𝐶𝑜𝑀 = ത𝑰𝐶𝑜𝑀 ሶ𝝎 + 𝝎 × ത𝑰𝐶𝑜𝑀𝝎

𝒏𝐶𝑜𝑀: torques around the center of mass 𝐶𝑜𝑀
ത𝑰𝐶𝑜𝑀: moments of inertia around the center of mass
𝝎: angular velocities of the rigid body
ሶ𝝎: angular accelerations (time derivative of 𝝎)

gyroscopic effects: Kreiselwirkung
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Newton-Euler: Equation of Motion

The Newton-Euler equations, which describe the complete motion of a rigid body, can 
be expressed in the form of a single equation: 

in simple terms:

where

v =
𝝎

𝒗𝐶

a =
ሶ𝝎

ሶ𝒗𝐶

f =
𝒏𝐶𝑂𝑀
𝒇

𝒗𝐶 : linear velocity of the body in relation to 𝐶𝑜𝑀
ሶ𝒗𝐶 : linear acceleration of the body in relation to 𝐶𝑜𝑀
f, v, a: 6D force or motion vectors, which describe all forces and motions (velocity, 

acceleration) acting on the body

𝒏𝐶𝑂𝑀
𝒇

=
ത𝑰𝐶𝑜𝑀 ሶ𝝎 + 𝛚 × ത𝑰𝐶𝑜𝑀𝛚

𝑚 ሷ𝒄

f = 𝑰a + v × 𝑰v
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Newton-Euler: Basic Principle

Considering the center of mass of a single arm element:

force = change of momentum → temporal derivation of
the momentum (Newton‘s second law)

𝒇𝑖 =
𝑑

𝑑𝑡
𝑚𝑖 𝒗𝐶,𝑖 = 𝑚𝑖 ሷ𝒄𝑖

torque = change of angular momentum → time 
derivative of the angular momentum + torque of 
gyroscopic effects (Euler‘s equation of motion)

𝒏𝐶,𝑖 =
𝑑

𝑑𝑡
𝐼𝑖 𝝎𝑖 +𝝎𝑖× 𝐼𝑖 𝝎𝑖

= 𝐼𝑖 ሶ𝝎𝑖 +𝝎𝑖× 𝐼𝑖 𝝎𝑖

Forces and torques acting on an arm element can be
calculated from velocity and joint angular velocity.

𝒇𝑖

ሷ𝒄𝑖

𝑚𝑖

𝒏𝐶,𝑖

ሶ𝝎𝑖

𝑚𝑖
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Newton-Euler: Concatenation

The accelerations ሷ𝒄𝑖 and ሶ𝝎𝒊 of an arm element 𝑖 depend on the accelerations of the preceding
arm elements.

Accelerations can be calculated recursively via the kinematic model
from the base to the gripper → forward equations

The force 𝒇𝒊 and the torque 𝒏𝐶,𝑖 which act on an arm element 𝑖 depend on the subsequent arm 
elements.

Forces and moments can be calculated recursively 
from the gripper to the base → backward equations

→ Recursive Newton-Euler Algorithm (RNEA)

concatenation: Verkettung
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Recursive Newton-Euler Algorithm (RNEA)

General procedure:

1. Recursive calculation of velocity and 
acceleration for each arm element from the 
base to the end effector (forward path)

2. Calculation of the forces/moments which 
act on each arm element, or which are 
required for the accelerations using 
Newton-Euler

3. Recursive calculation of the forces over all 
arm elements and the joint force variables 
for the respective joint type (backward 
path)

forward path

backward path



Robotik I: Introduction to Robotics | Chapter 0447

RNEA: Step 1

Recursive calculation of the velocity and acceleration of each individual arm 
element 𝑖 from the base to the end effector (forward path)

Velocity

Acceleration

v𝑖 = v𝑝(𝑖) +𝝓𝑖 ሶ𝒒𝑖

a𝑖 = a𝑝(𝑖) +𝝓𝑖 ሷ𝒒𝑖 + ሶ𝝓𝑖 ሶ𝒒𝑖

ሶ𝒒𝑖: generalized velocity of the arm element 𝑖
𝝓𝑖: 6 × 𝑛 motion matrix (depends on joint type)
v𝑝(𝑖): velocity of the preceding element 𝑝(𝑖)

ሷ𝒒𝑖: generalized acceleration of the arm element 𝑖
ሶ𝝓𝑖: derivation of 𝝓𝑖

forward path
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RNEA: Step 2

Calculation of the forces/moments using the Newton-Euler 
equation, which act on each arm element 𝑖 due to the acceleration 
(from step 1)

f𝑖
a = 𝑰𝑖a𝑖+ v𝑖 × 𝑰𝑖v𝑖

f𝑖
a

f𝑖+1
a

f𝑖
a: forces acting on arm element 𝑖 due to a𝑖
𝑰𝑖: moment of inertia of arm element 𝑖
v𝑖: velocity of arm element 𝑖 (calculated in step 1)
a𝑖: acceleration of arm element 𝑖 (calculated in step 1)
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RNEA: Step 3

Recursive calculation of the forces between the arm 
elements (left) and the joint force variables for the 
respective joint type (backward path)

𝐟𝑖 = f𝑖
a − f𝑖

𝐞 + ෍

𝑗 𝜖 𝑐(𝑖)

𝐟𝑗

link 𝑖

link 
p(𝑖)

link 𝑐1

link 𝑐2

link 𝑐3

f𝑖
e

𝐟𝑖

joint 𝑖

𝐟𝑐1

𝐟𝑐3

𝐟𝑐2
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RNEA: Step 3

𝐟𝑖: resulting force on arm element 𝑖

f𝑖
𝐞: sum of all external forces acting on 𝑖

𝐟𝑗: force of an adjacent arm element 𝑗

𝑐 𝑖 : set of arm elements in the kinematic chain subsequent to 𝑖

𝝓𝑖: 6 × 𝑛 motion matrix (depends on joint type)

𝝉𝑖: generalized forces/torques acting on 𝑖

backward path

𝐟𝑖 = f𝑖
a − f𝑖

𝐞 + ෍

𝑗 𝜖 𝑐(𝑖)

𝐟𝑗

𝝉𝑖 = 𝝓𝑖
𝑇𝐟𝑖

Recursive calculation of the forces between the arm 
elements (left) and the joint force variables for the 
respective joint type (backward path)



Robotik I: Introduction to Robotics | Chapter 0451

RNEA: Summary

1. Recursive calculation of the velocity and acceleration of each individual arm element 𝑖 from 
the base to the end effector:

2. Calculation of the forces/moments on each individual arm element 𝑖 using Newton-Euler:

3. Recursive calculation of the forces between the arm elements and the generalized forces for 
the respective joint type

v𝑖 = v𝑝(𝑖) +𝝓𝑖 ሶ𝒒𝑖 with v0 = 0

a𝑖 = a𝑝(𝑖) +𝝓𝑖 ሷ𝒒𝑖 + ሶ𝝓𝑖 ሶ𝒒𝑖 with a0 = −a𝑔

f𝑖
a = 𝑰𝑖a𝑖+ v𝑖 × 𝑰𝑖v𝑖

𝐟𝑖 = f𝑖
a − f𝑖

𝐞 + ෍

𝑗 𝜖𝑐(𝑖)

𝐟𝑗𝝉𝑖 = 𝝓𝑖
𝑇𝐟𝑖 with
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Recursive Newton-Euler Algorithm (RNEA)

Complete Algorithm

v0 = 0
a0 = −a𝑔
for 𝑖 = 1 to 𝑛 do

v𝑖 = v𝑝(𝑖) +𝝓𝑖 ሶ𝒒𝑖
a𝑖 = a𝑝(𝑖) +𝝓𝑖 ሷ𝒒𝑖 + ሶ𝝓𝑖 ሶ𝒒𝑖
𝐟𝑖 = 𝑰𝑖a𝑖+ v𝑖 × 𝑰𝑖v𝑖 − f𝑖

𝐞

end for

for 𝑖 = n to 1 do

𝝉𝑖 = 𝝓𝑖
𝑇𝐟𝑖

if 𝑝(𝑖) ≠ 0 then

𝐟𝑝(𝑖) = 𝐟𝑝(𝑖) + 𝐟𝑖
end if

end for

forward path

backward path
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Method of Newton-Euler: Summary
(motion of the base)

111 ,, qqq 

222 ,, qqq 

(forces and torques on the end effector)

𝝉0

𝝉𝑛−1

𝝉𝑛

v0, 𝐚𝟎

v1, 𝐚1

v𝑛, 𝐚𝑛

v1
𝐚1

v𝑛
𝐚𝑛

𝐟𝑛

𝐟𝑛−1

𝐟0

f = 𝑰a + v × 𝑰v

v =
𝝎

𝒗𝐶
a =

ሶ𝝎

ሶ𝒗𝐶

f =
𝒏𝐶
𝒇

where
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Method of Newton-Euler: Properties

Properties

Arbitrary number of joints

Loads on arm elements are calculated

Effort 𝑂(𝑛) (𝑛: number of joints)

Recursive
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Challenges of Dynamics

The methods presented for modeling dynamics (Lagrange and Newton-Euler) are only 
approximations of the dynamics

Non-linear forces (e.g. friction) cannot be modeled directly, but have a major 
influence:

𝒒, ሶ𝒒, ሷ𝒒: 𝑛 × 1 vector of generalized coordinates 
(position, velocity and acceleration)

𝝉: 𝑛 × 1 vector of generalized forces
𝑀(𝒒): 𝑛 × 𝑛 matrix of mass inertia (symmetric, positive-definite)
𝐶 ሶ𝒒, 𝒒 ሶ𝒒: 𝑛 × 1 vector with centripetal and Coriolis components
𝑔 𝒒 : 𝑛 × 1 vector of gravitational components 
𝜖(𝒒, ሶ𝒒, ሷ𝒒): 𝑛 × 1 non-linear effects, e.g. friction

𝝉 = 𝑀 𝒒 ሷ𝒒 + 𝐶 𝒒, ሶ𝒒 ሶ𝒒 + 𝑔 𝒒 + 𝜖(𝒒, ሶ𝒒, ሷ𝒒)
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Challenges of Dynamics

The dynamics of a robot can change considerably over time,
e.g. due to

Wear and tear

Material changes (elongation, etc.) 

The dynamics vary greatly depending on the task to be performed 
Examples: 

Interaction with the environment

Grasping and manipulating objects

Use of tools
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Learning of Dynamics

Dynamics depend on the task to be performed (here: ‘pick and place’)

without object with object (851g)
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Learning of Dynamics

The ‘pick and place’ task can be divided into several phases:
1. Approaching the object

2. Grasping the object

3. Placing the object

4. Withdrawing from the object

The diagram shows that the torques with 
and without the object differ greatly from
each other

→ Dynamics must be adapted or learned 
during the task

Hitzler, K., Meier, F., Schaal, S. and Asfour, T., Learning and Adaptation of Inverse Dynamics Models: A Comparison, IEEE/RAS International 
Conference on Humanoid Robots (Humanoids), October, 2019 

Approaching      Grasping            Placing            Withdrawing        

without object
with object
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Learning of Kinematics and Dynamics


