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Models in Robotics — Outline A“(IT

Karlsruhe Institute of Technology

® Kinematic Models
Kinematics studies of motion of bodies and systems based only on geometry, i.e.
without considering the physical properties and the forces acting on them. The
essential concept is a pose (position and orientation).

® Dynamic Models
Dynamics studies the relationship between the forces and moments acting on a robot

and accelerations they produce

® Geometric Models
Geometry: Mathematical description of the shape of bodies

D
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Dynamic Model: Definition & Goal A“(IT

Karlsruhe Institute of Technology

® Definition:

The dynamic model describes the relationship between the actuator and
contact forces and moments acting on a robot and accelerations and
motions they produce

® Goal:
® Analysis of the dynamics
® Design und synthesis of mechanical structures
® Controller design and control (= Inverse Dynamics)
® Modeling and simulation (— Forward Dynamics)

&
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Motivation ﬂ(IT

Karlsruhe Institute of Technology

Boston Dynamics: https://www.youtube.com/watch?v=_sBBaNYex3E

&
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Dynamic Model: Equation of Motion A“(IT

Karlsruhe Institute of Technology

® General equation of motion

T=M(@)q+Cqqq+9q) +eq, q,q)

q,9, q: n X 1 vector of generalized coordinates

(position, velocity and acceleration)
T n X 1 vector of generalized forces
M(q): n X n matrix of mass inertia (symmetric, positive-definite)
C(q,9)q: n X 1 vector with centripetal and Coriolis components
g(q): n X 1 vector of gravitational components

€(q,q,q): nXxX1 non-linear effects, e.g. friction (often neglected)

n: degrees of freedom of the robot

&
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Dynamic Model: Equation of Motion A“(IT

Karlsruhe Institute of Technology

® General equation of motion

T=M(@)q+Cqqq+9q) +eq, q,q)

q,9, q: n X 1 vector of generalized coordinates

(position, velocity and acceleration)
T: n X 1 vector of generalized forces
M(q): n X n matrix of mass inertia (symmetric, positive-definite)
C(q,9)q: n X 1 vector with centripetal and Coriolis components
g(q): n X 1 vector of gravitational components

€(q,q,q): nXxX1 non-linear effects, e.g. friction (often neglected)
What are generalized coordinates?
n: degrees of freedom of the robot

&
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Generalized Coordinates (1) A“(IT

Karlsruhe Institute of Technology

@ Definition

Minimum set of independent coordinates that completely describe
the system state.

® General Model

® A robot consists of N particles with mass m; and coordinate x;

® For each position vector of a particle 3 spatial coordinates are needed, in total
3N coordinates, to describe the system

® Newton’s second law: F; =m; - Xx; with i =1,...,N
® Particles cannot move independently of each other due to connections and joints

- Introduction of constraints

&
Robotik I: Introduction to Robotics | Chapter 04 H2T



Generalized Coordinates (2) A“(IT

Karlsruhe Institute of Technology

® Holonomic constraints can be formulated as equations of the coordinates x;
(k: number of constraints):

fj(xlr ---;ng) =0 ] - 1' ,k

® The 3N coordinates can be reduced to n = 3N — k independent generalized

coordinates q; using k independent constraints which must automatically satisfy the
constraints:

x; =x;(91,...,9,) 1=1,...,3N and n=3N-—-k

fi@y . qn) =0 j=1,.,k and n=3N-k

&
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Generalized Coordinates : 2D pendulum A“(IT

Karlsruhe Institute of Technology

® The rod of a plane pendulum (2D) should always have
the length [ and must therefore fulfill the following N ANNNAN
constraint (k = 1) according to Pythagoras:

fi(x1,%x) =0 X1 =X, X =Y
Sxi+y?—12=0

® There is only one generalized coordinate g, since
n = 2N — k = 1. The coordinates x, y of the center of
mass r depend on 6:

x=1[-sinf@ sin @
> r= ()=l-< >
y:l-cos@ fq COSQ

&
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Generalized Coordinates : 2D pendulum A“(IT

Karlsruhe Institute of Technology

® The generalized coordinate automatically satisfies the NN
constraint:

(l-sin@)?+ (l-cosB)*—14=0

& 14 (sin“0 4+ cos?0—1) =0

B As the following generally applies:

sin? @ + cos?0 =1

&
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Generalized Coordinates: 3D pendulum A“(IT

Karlsruhe Institute of Technology

x) NANANNNAN

® Position of the mass: r= ()’
A

® Constraint (k = 1) on a sphere surface

Ir|l=1lo|r|-1=0

i) =Irl-1=0
® Generalisierte Koordinaten (n =3N —k =2): q = (55)
sin 6 cos ¢
r=f(>@q) =1- (sin@sinqﬁ)
—cos 6

&
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Generalized Coordinates: Example A“(IT

rl—1l=0=2|r2-1%2=0
sin 8 cos ¢
r=f(q) =l-<sin6?sin¢>

—cosf

&
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Generalized Coordinates: Example

rl—1l=0=2|r2-1%2=0

sin 8 cos ¢
r=f(~@q) =1- (sin@sind))
—cos 6
sin @ cos ¢\ °
lr|2 =1?%- (sin@ sin qb)
—cos 6
= [% - (sin? @ cos? ¢ + sin? O sin? ¢ + cos? 9)
=12 - (sin? B - (cos? ¢ + sin? ) + cos? )

=12 - (sin? 8 + cos? )
— 2
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Dynamic Model: Equation of Motion A“(IT

Karlsruhe Institute of Technology

® General equation of motion

T=M(@)q+Cqqq+9q) +eq, q,q)

q,9, q: n X 1 vector of generalized coordinates

(position, velocity and acceleration)
T: n X 1 vector of generalized forces
M(q): n X n matrix of mass inertia (symmetric, positive-definite)
C(q,9)q: n X 1 vector with centripetal and Coriolis components
g(q): n X 1 vector of gravitational components

€(q,q,q): nXxX1 non-linear effects, e.g. friction (often neglected)

n: degrees of freedom of the robot

&
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Direct Dynamic Problem -.\ﬂ(IT

Karlsruhe Institute of Technology

® Calculate the resulting changes in movement based on external forces and moments
as well as the initial state and the dynamic properties of the robot

: Direct
given: T(¢) Dynamic desired: q(t), q(t), g(t)
Initial value problem of
mechanics
given: q(tO)! q(tO)r q(tO)
tT=M(@)q+C(q, q)q+ g(q) (non-linear effects neglected)

— solve differential equation for q(t), q(t), g(t)

&
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Inverse Dynamic Problem -.\ﬂ(IT

Karlsruhe Institute of Technology

Calculate required driving forces and torques based on the desired motion
parameters and the dynamic properties of the robot

given: q(t), q(t),q(t) Inverse desired: T(t)
Problem
t=M(q)q+C(q,q)q+ g(q) (non-linear effects neglected)

Calculate the right part of the equation by inserting q(t), q (t), g (t)

&
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Dynamic Model: Example A“(IT

Karlsruhe Institute of Technology

F; = —mX  inertia
m
—€— — e e
F, F T Fr = —Kg¢x  sliding friction

//////////////// T external force

® Balance of forces: T = —(Fi + Ff)
® Equation of motion: T=mX+ Kgrx

® Inverse problem: Given the state of motion, what external force T acts on the system or is
required to maintain the state of motion?

® Direct problem: Given the external force and current state of motion, what is the new motion
(or acceleration) state of the system?

&
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Modeling of Dynamics A“(IT

Karlsruhe Institute of Technology

® There are various methods for deriving the terms of the general equation of motion:

T=M(q)4+C(q,q9)q + g(q)

@ Lagrange
® Work or energy considerations of the overall system
® Equations of motion by formal derivation

® Newton-Euler
® Based on the Newton and Euler equations for rigid bodies
® [solated consideration of the arm elements
W Efficient method due to recursive algorithm

&
Robotik I: Introduction to Robotics | Chapter 04 H2T



22

Contents

® Dynamic Model
® Generalized Coordinates

® Modeling of Dynamics

® Method of Lagrange

® Method of Newton-Euler

® Challenges of Dynamics

Robotik I: Introduction to Robotics | Chapter 04

SKIAT

Karlsruhe Institute of Technology



23

Method of Lagrange A“(IT

Karlsruhe Institute of Technology

® Lagrange function:

L(q,9) = Exin(q,q) — Epot(q)

® The equation of motion can be derived using the Lagrange function for each

generalized coordinate:
_dfaL\ oL
ti = dt Bql Bql

q;: i-th component of the generalized coordinates
T;: i-th component of the generalized forces

Robotik I: Introduction to Robotics | Chapter 04
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Method of Lagrange

® The resulting equation can be written in scalar form:

EMU QJ EECLJRCI]QR'l'g(Q)

j=1k=

C;jk: first order Christoffel symbols

1/0M;; OMy, OMj
Cijk =5 + -
2\ dq, 0dq; 0q;

Robotik I: Introduction to Robotics | Chapter 04
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Method of Lagrange: Procedure -\\!(IT

Karlsruhe Institute of Technology

® Goal: Determine the equation of motion for each joint i of a robot

_dfaL\ oL
= at\ag;) ~ aq,

® Procedure:
1. Calculate Ey;, and Eppt

2. Express Eyin and E,,; in generalized coordinates

L(q,q) = Exin(q,9) — Epot(q)

3. Calculate the derivations

&
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Method of Lagrange: 3D-Pendulum (1)

® 3D-pendulum with gravity
(see example of generalized coordinates)

sin 6 cos ¢
umr=7{,(q) =l-<sinesin¢>

—cos 6
QE,, = %mli‘l2 = %mlz(éz + ¢? - sin? 9)
WEype=m-g-h=mg-(—1-cosb)

) =u@ v = f &) =ul) v +ux) - v

26 Robotik I: Introduction to Robotics | Chapter 04
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Method of Lagrange: 3D-Pendulum (2)

® Lagrange function with g = (0, ¢)
L(q,q) = Exin(q,q) — Epot(q)

%mlz(éz + 2 - sin? 9) + mgl - cos @

@ Derive:

SKIAT

Karlsruhe Institute of Technology

AN \\T\\\\

oL

a0

T;

d

dt

(

JdL

JdL

aq;

)_

aq;

a
dt

5)
oL _
¢
«(59)
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Method of Lagrange: 3D-Pendulum (2) A“(IT

Karlsruhe Institute of Technology

® Lagrange function with g = (0, ¢)
L(q,q) = Exin(q,q) — Epot(q)

= %mlz(éz + 2 - sin? 9) + mgl - cos @

AN \\T\\\\

@ Derive:

5 d (0L JdL
£=mlzsin00050-g[)z—mgl-sine Ti:a aq; _aq,-

9 . ”
2 (%) = = (mi26) = mi?4

aL _
ap

%(g—;) =%(mlz(ﬁ-sin29) = ml?sin? 6 - ¢ + 2ml?sinBcosO - 6 - ¢

0

D
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Method of Lagrange: 3D-Pendulum (3) A“(IT

Karlsruhe Institute of Technology

oL _

— = —mgl-sin@
SRda0 sl () _ 2 (ui2g) =
i dt aql aql cé_tiieo dt
21¢6L_d lz' .29_ 12.29 7
E(%)—a(m ¢ -sin?0) =mi?sin? 6 - § +

@ Structure of general equations of motion

T=M(q)q+C(q,q9)q + g(q)

@ Equation of motion of the 3D-pendulum (no external forces -> t = 0)

_[mlt? 0 ] 6 mglsin 6
0= 0 ml*sin“6 [¢]+l ]+[ 0 ]

&
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Lagrange: Example — Two pivot joints (1) -.\ﬂ(IT

YA

my
rp
a;
qz |
m1 ,’/
r
a1 1
d1

Karlsruhe Institute of Technology

Idealization:

masses of arm elements as
point masses in my and m,

no friction

g Constraints of the system (k = 2):
firy,ry) =1Iril>—af =0

v fo(ry,ry) = |r2—r1|2—a% =0

>n=2N-—-k=2
—>generalized coordinates q, q-

Robotik I: Introduction to Robotics | Chapter 04
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Lagrange: Example — Two pivot joints (2)

YA

Robotik I: Introduction to Robotics | Chapter 04

y

@ Joint 1:

1

_ 2
Ekin,l = E mqv

1

2

SKIAT

Karlsruhe Institute of Technology

2 .
mias;qq

2

Epot1 = mygh = myga, sin(q,)
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Lagrange: Example — Two pivot joints (3) -.\ﬂ(IT

Karlsruhe Institute of Technology

Joint 2:
YA m, (x2,¥2) Position:
. xz] _ [al cos(qq) + a,cos(q; + q5)
2 0 g Vo a, sin(qq) + a,sin(q; + q5)
) Velocity:
a
[552] _ [—a1Ci1 sin(q,) — az(q; + g2)sin(q; + q2)
N > Y2 a;q, cos(qy) + az (g + gz)cos(qy + qz)
X
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Lagrange: Example — Two pivot joints (4) -.\ﬂ(IT

Karlsruhe Institute of Technology

® Joint 2:
@ Kinetic energy:
Vy? = xzi +9,° = 611125112 + a,%(q1 + G2)* + 2611612(61'12 + 4142) cos(qz)

Exinz = Emzvz2 = 5771261125112 + Emzazz(ch +¢2)* + 7”2611512(5112 + 4142)C05(QZ)

® Potential energy:
Epot2 = mpgy, = mygla, sin(qy) + apsin(q; + q3)]

® Lagrange function:
L = Eyin — Epot = Ekin,l + Ekin,Z - Epot,l - Epot,z

=5 (my + my)a 24,° + Emzazz(qﬁ +q,)* + 7”'12611612(6'112 + 4172) cos(q;)
—(my + my)ga, sin(qy) — myga,sin(qy + q;)

&
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Lagrange: Example — Two pivot joints (5) -.\ﬂ(IT

Karlsruhe Institute of Technology

® Equation of motion
® Joint 1:

oL . . . . .
— = (my + my)a;*q; + myay®(q; + qz) + myaia,(2q; + q) cos(qz)

dq1

i a_L _ 2 .o 2 .o .o 2 .o .o

at\og. ) = (my + my)as”qgy + mpa, (4 + ¢2) + meaia,(241 + 42) cos(qz)
—m,a,0a,(241G; + 42°) sin(qy)

oL

PP —(my + my)ga;cos(qy) — myga,cos(qy + qz)

&
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Lagrange: Example — Two pivot joints (5)

® Equation of motion
® Joint 2:

oL . . .
30 — mzazz(ql + q,) + mya,a,q; cos(q,)

d (0dL

dt (@) = mya,*(dy + 43) + myaja,q; cos(qy) — mya;a,4;q; sin(qy)

oL : N
T = —mya,a,(G1% + G1G,)sin(q,) — myga,cos(qy + qz)

Robotik I: Introduction to Robotics | Chapter 04
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Lagrange: Example — Two pivot joints (6) -.\ﬂ(IT

Karlsruhe Institute of Technology

@ Equation of motion:

[T1] _ -(m1 + my)a;? + mya,? + 2myaqa, cos(q,) mya,? + My a,a,c08(q,) lqll
Ty m,a,? + mya,a, cos(qy) M, a,? i,

—m,a, a, (2‘11QZ + QZZ)Sin(qz)

+ . 2 .
m,aya,4;"sin(q,)
+ '(my + my)gay cos(q,) + myga,cos(qy + ‘h)l
! m,ga,cos(q, + qz)

® Summarized:

t=M(q)q+C(q,qq + g(q)

&
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Method of Lagrange: Summary A“(IT

Karlsruhe Institute of Technology

To determine the equations of motion, the kinetic and potential energy must be
determined. From this, the Lagrange function can be calculated.

L(q,q) = Exin(q,q) — Epot(q)

The equations of motion then follow formally by differentiation:

o d(aL\ aL
YT dt\aq;) ~ aq;

&
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Method of Lagrange: Properties

@ Properties
® Simple formulation of the equations
® Closed model, analytically evaluable

B Very extensive calculations 0(n3)
(n : number of joints)

® Only driving torques are calculated

Robotik I: Introduction to Robotics | Chapter 04
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Method of Newton-Euler -\\!(IT

Karlsruhe Institute of Technology

® Idea: Forces and moments acting on an arm element can be calculated from the joint
angle positions, velocities and accelerations using the recursive Newton-Euler
algorithm (RNEA)

Input: q(t), q(t), q(t) Recursive Output: T(t)
— Newton-Euler —
Algorithm

® Properties
@ |solated considertaion of each arm element

W Efficient calculation in real-time with complexity O(n) possible through recursive
algorithm

&
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Newton-Euler: Mathematical Basics A“(IT

Karlsruhe Institute of Technology

® The moment of inertia of a rigid body in a rotation motion is comparable to the mass
in a linear motion:

® linear motion: force = mass - acceleration
(Newton’s second law)

f=m-a=m-v.=m-¢

® rotation motion: torque = moment of inertia - angular acceleration
(Angular momentum theorem)

M = JCOM o = JCOM 4,

CoM: Center of Mass

&
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Newton-Euler: Euler‘s Equation of Motion A“(IT

Karlsruhe Institute of Technology

If a body is subjected to a torque, gyroscopic effects develop
(Euler forces and centrifugal forces at all mass points)

The torques can be added up and described by Euler's equation of motion for rigid
bodies:

Neoy = 1M + w X I w

Ncom: torques around the center of mass CoM

I°°M.  moments of inertia around the center of mass
w: angular velocities of the rigid body
w: angular accelerations (time derivative of w)

gyroscopic effects: Kreiselwirkung

&
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Newton-Euler: Equation of Motion A“(IT

Karlsruhe Institute of Technology

® The Newton-Euler equations, which describe the complete motion of a rigid body, can
be expressed in the form of a single equation:

neom) (1Mo + o xIYo
f ) mc

® in simple terms: w
V= -
C
Ncom
a = .
V¢
Ve linear velocity of the body in relation to CoM
Vo linear acceleration of the body in relation to CoM

f, v, a: 6D force or motion vectors, which describe all forces and motions (velocity,
acceleration) acting on the body

&
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Newton-Euler: Basic Principle -.\ﬂ(IT

Karlsruhe Institute of Technology

® Considering the center of mass of a single arm element:

® force = change of momentum — temporal derivation of Cl/
the momentum (Newton‘s second law)
d

fi= E(mi Vei) = Myt

® torque = change of angular momentum — time
derivative of the angular momentum + torque of
gyroscopic effects (Euler’s equation of motion)

Nei = (I; w;) + w; X I; w;
= Ii(bi + (Dix Ii w;

® Forces and torgues acting on an arm element can be
calculated from velocity and joint angular velocity.

44 Robotik I: Introduction to Robotics | Chapter 04



Newton-Euler: Concatenation A“(IT

Karlsruhe Institute of Technology

The accelerations ¢; and w; of an arm element i depend on the accelerations of the preceding
arm elements.

Accelerations can be calculated recursively via the kinematic model
from the base to the gripper — forward equations

The force f; and the torque n; which act on an arm element i depend on the subsequent arm
elements.

Forces and moments can be calculated recursively
from the gripper to the base — backward equations

— Recursive Newton-Euler Algorithm (RNEA)

concatenation: Verkettung

&
45 Robotik I: Introduction to Robotics | Chapter 04 H2T



Recursive Newton-Euler Algorithm (RNEA) A“(IT

Karlsruhe Institute of Technology

® General procedure:

1.

Recursive calculation of velocity and
acceleration for each arm element from the

base to the end effector (forward path) forward path

Calculation of the forces/moments which
act on each arm element, or which are
required for the accelerations using
Newton-Euler

Recursive calculation of the forces over all

arm elements and the joint force variables backward path
for the respective joint type (backward

path)

&
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RNEA: Step 1 -.\ﬂ(IT

Karlsruhe Institute of Technology

® Recursive calculation of the velocity and acceleration of each individual arm
element i from the base to the end effector (forward path)
® Velocity Vi = Vpi) + 9iq; forward path

q;: generalized velocity of the arm element i
¢;: 6 X n motion matrix (depends on joint type)
Vy(i): velocity of the preceding element p(i)

® Acceleration a; = a,y + Pl + P4,

q;: generalized acceleration of the arm element i
¢;: derivation of ¢;

D
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RNEA: Step 2 -.\ﬂ(IT

Karlsruhe Institute of Technology

® Calculation of the forces/moments using the Newton-Euler
equation, which act on each arm element i due to the acceleration
(from step 1)

a __
fi = Il-al-+vl- X IiVi

f?: forces acting on arm element i due to a;

I;: moment of inertia of arm element i

v;: velocity of arm element i (calculated in step 1)

a;: acceleration of arm element i (calculated in step 1)

&
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RNEA: Step 3

® Recursive calculation of the forces between the arm
elements (left) and the joint force variables for the
respective joint type (backward path)

49 Robotik I: Introduction to Robotics | Chapter 04
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RNEA: Step 3 A“(IT

Karlsruhe Institute of Technology

® Recursive calculation of the forces between the arm
elements (left) and the joint force variables for the
respective joint type (backward path)

1T
T, =@ backward path

f;:  resulting force on arm element i

f¢:  sum of all external forces acting on i

:  force of an adjacent arm element j

c(i): set of arm elements in the kinematic chain subsequent to i
¢;: 6 X n motion matrix (depends on joint type)

T;: generalized forces/torques acting on i

&
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RNEA: Summary -.\ﬂ(IT

1.

Karlsruhe Institute of Technology

Recursive calculation of the velocity and acceleration of each individual arm element i from
the base to the end effector:

Vi = Vp() + ¢;q; with v =0
a; = ap) + $iq; + piq;  with ap = —a,
Calculation of the forces/moments on each individual arm element i using Newton-Euler:

f? = Il-ai+vl- X IiVi

Recursive calculation of the forces between the arm elements and the generalized forces for
the respective joint type

Ti=¢g1fi with f; =1 —f + z f;

D
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Recursive Newton-Euler Algorithm (RNEA) A“(IT

Karlsruhe Institute of Technology

® Complete Algorithm
Zg = (lag forward path
fori =1tondo
Vi = Vpi) + 9iq; .
a; = a,;) + diq; + Piq;
f; = Liaj+v; X I;v; — f}

end for
fori =nto1do
T, = ini backward path

if p(i) # 0 then
£y = fpy + 1
end if
end for

&
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Method of Newton-Euler: Summary

(motion of the base)

Vo, dg

!

Q1’Q1’q1 —*O

|

Vq,dq

!

d,,4,,4,—>0

!

53 Robotik I: Introduction to Robotics | Chapter 04
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— T
f, n

(forces and torques on the end effector)

SKIAT
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f=Ia+vXlIv

where

= ()= ()
= (7)



Method of Newton-Euler: Properties A“(IT

Karlsruhe Institute of Technology

Properties
Arbitrary number of joints
Loads on arm elements are calculated

Effort O(n) (n: number of joints)

Recursive

&
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Challenges of Dynamics A“(IT

Karlsruhe Institute of Technology

® The methods presented for modeling dynamics (Lagrange and Newton-Euler) are only
approximations of the dynamics

® Non-linear forces (e.g. friction) cannot be modeled directly, but have a major
influence:

T=M(@)q+Cqqq+9(q) +c(q, q,q9)

q,q q: n X 1 vector of generalized coordinates

(position, velocity and acceleration)
T n X 1 vector of generalized forces
M(q): n X n matrix of mass inertia (symmetric, positive-definite)
C(q,9)q: n X 1 vector with centripetal and Coriolis components
9(q): n X 1 vector of gravitational components
€(q,q,9): n X 1 non-linear effects, e.g. friction

&
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Challenges of Dynamics A“(IT

Karlsruhe Institute of Technology

® The dynamics of a robot can change considerably over time,
e.g. due to

® Wear and tear
® Material changes (elongation, etc.)

® The dynamics vary greatly depending on the task to be performed
Examples:

® Interaction with the environment
® Grasping and manipulating objects
® Use of tools

&
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Learning of Dynamics ﬂ(IT

Karlsruhe Institute of Technology

® Dynamics depend on the task to be performed (here: ‘pick and place’)

without object with object (851g)
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Learning of Dynamics -.\ﬂ(IT

Karlsruhe Institute of Technology

® The ‘pick and place’ task can be divided into several phases:
Approaching the object

L. Approaching  Grasping Placing Withdrawing
2. Grasping the object : :
30 4 R without object
3. Placing the object with object
4. Withdrawing from the object 251 r b
20 D \
®  The diagram shows that the torques with g
and without the object differ greatly from £7] N
each other 10 \
51 \
— Dynamics must be adapted or learned N \
during the task "L | | | .
0 2000 4000 6000 8000

Training Sample

&
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Learning of Kinematics and Dynamics ﬂ(IT

Karlsruhe Institute of Technology

&
60 Robotik I: Introduction to Robotics | Chapter 04 H2T



